Name: \qquad
Student ID: \qquad
Section: \qquad
Instructor: \qquad

Math 113 (Calculus 2)
 Exam 2
 9-13 October 2009

Instructions:

1. Work on scratch paper will not be graded.
2. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
3. Simplify your answers. Expressions such as $\ln (1), e^{0}, \sin (\pi / 2), \tan ^{-1}(1)$, etc. must be simplified for full credit.
4. Calculators are not allowed.

For Instructor use only.

$\#$	Possible	Earned	$\#$	Possible	Earned	
M.C.	36			12	8	
10 a-c	12		13	8		
10 d-f	12			14	8	
11	8			15	8	
Sub	68			Sub	32	
				Total	100	

Answers to MC: 1C 2C 3D 4A 5B 6B 7D 8C 9E

Multiple Choice (36 points). Fill in the answer to each problem on your scantron. Make sure your name, section and instructor is on your scantron.

1. $\int_{0}^{1} t e^{-t} d t=$
A. 1
B. $1-\frac{1}{e}$
C. $1-\frac{2}{e}$ D. $1+\frac{1}{e}$
E. $1+\frac{2}{e}$
2. $\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{2} x d x=$
A. 0
B. $\frac{1}{15}$
C. $\frac{2}{15}$ D. $\frac{1}{5}$
E. $\frac{4}{15}$
3. $\int_{0}^{\pi} \cos ^{2} x d x=$
A. $\frac{\pi}{5}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$
E. π
4. $\int \frac{d x}{x^{2} \sqrt{x^{2}+4}}$
A. $-\frac{\sqrt{x^{2}+4}}{4 x}+C$
B. $-\frac{\sqrt{x^{2}+4}}{x}+C$
C. $\frac{\sqrt{x^{2}+4}}{4 x}+C$
D. $\frac{\sqrt{x^{2}+4}}{x}+C$
5. $\int_{-1}^{0} \frac{d x}{x^{2}+2 x+2}=$
A. $\frac{\pi}{5}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$ D
D. $\frac{\pi}{2}$
E. π
6. $\int_{1}^{2} \frac{d x}{(x+1)(x+2)}=$
A. $\ln \frac{10}{9}$
B. $\ln \frac{9}{8}$
C. $\ln \frac{8}{7}$
D. $\ln \frac{7}{6}$
E. $\ln \frac{6}{5}$
F. $\ln \frac{5}{4}$
G. $\ln \frac{4}{3}$
7. $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=$
A. $\frac{\pi}{5}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$
E. π
8. What is the integral definition of $\ln x$?
A. $\int_{0}^{x} \frac{1}{t} d t$ for $x>0$
B. $\int_{1}^{x} \frac{1}{t} d t$ for $x>1$
C. $\int_{1}^{x} \frac{1}{t} d t$ for $x>0$
D. $\int_{0}^{x} \frac{1}{t} d t$ for all real numbers x
E. $\int_{1}^{x} \frac{1}{t^{2}} d t$ for $x>0$
F. $\int_{1}^{e} \frac{1}{t} d t$ for $x>0$
9. $\int \sec ^{3} x d x=$
A. $\frac{1}{2} \sec x \tan x+C$
B. $\frac{1}{2} \ln |\sec x+\tan x|+C$
C. $\frac{1}{2}(\sec x+\ln |\sec x|)+C$
D. $\frac{1}{2}(\csc x \cot x+\ln |\csc x-\cot x|)+C$
E. $\frac{1}{2}(\sec x \tan x+\ln |\sec x+\tan x|)+C$

Short Answer. Fill in the blank with the appropriate answer. 4 points each. A correct answer gets full credit. You will need to show your work for partial credit.
10. (24 points)
(a) Use the integral definition of $\ln 2$ and the midpoint rule with $n=2$ to approximate $\ln 2$.
(b) If $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for $a \leq x \leq b$, Order L_{n}, R_{n}, M_{n} and T_{n} where L_{n} is the left endpoint approximation, R_{n} is the right endpoint approximation, M_{n} is the midpoint rule, and T_{n} is the trapezoidal rule each using n subdivisions.
\qquad $<$ \qquad $<$ \qquad $<$ \qquad
(c) If $\sin \theta=x$, find $\sin 2 \theta$ in terms of x.
(d) Evaluate $\int \frac{x^{3}+x+1}{x^{2}+1} d x$
(e) Circle the integrals that converge and put an X over the integrals that diverge.
A. $\int_{1}^{\infty} \frac{d x}{x^{2}}$
B. $\int_{0}^{1} \frac{d x}{x^{2}}$
C. $\int_{1}^{\infty} \frac{3+\sin 2 x}{x} d x$
D. $\int_{0}^{1} \frac{3+\sin 2 x}{\sqrt{x}} d x$
(f) A table for the function f is given. Use the table and Simpson's Rule with $n=4$ to estimate $\int_{0}^{2} f(x) d x$.

x	0.0	0.5	1.0	1.5	2.0
$f(x)$	2.5	2.8	3.0	3.2	3.5

Show your work for problems 11-15. Each problem is worth 8 points.
11. Evaluate the integral $\int_{-1}^{3} \sqrt{3+2 t-t^{2}} d t$.
12. Evaluate the integral $\int \sqrt{\frac{1+x}{1-x}} d x$
13. Use the Comparison Theorem to determine whether the integral is convergent or divergent. $\int_{0}^{\infty} \frac{x^{2}}{x^{5}+7} d x$. Justify your reasoning.
14. Evaluate the integral $\int \sin 8 x \sin 5 x d x$.
15. Evaluate the integral $\int \frac{\sqrt{x^{2}-9}}{x^{4}} d x$.

